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Dynamic-Scaling Theory of Critical Ultrasonic 
Attenuation in Binary Liquids 1 

R. A. Ferrell  2 

The critical slowing down that sets in near the critical point of a second-order 
phase transition is manifested in fluids by a diverging relaxation time for the 
long-wavelength order-parameter fluctuations. This divergence has a profound 
effect on all of the transport properties. In sound propagation, the adiabatic 
compressions and dilations produce temperature swings which the order- 
parameter fluctuations can follow fully only if the sound frequency is smaller 
than the relaxation rates in the fluid. As the critical point is approached this 
condition is violated and a lagging, or hysteretic, response results. As 
demonstrated by Clerke et al., the known amplitude of the temperature swings 
leads to a prediction of ultrasonic attenuation at the critical point that agrees, in 
magnitude, exactly with that found by Harada et al. The theoretically predicted 
scaling function that describes how the attenuation and dispersion vary as the 
critical point is approached is in good agreement with the experimental findings 
of Garland and Sanchez. 
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1. I N T R O D U C T I O N  

In this brief review of the critical ul t rasonic a t t enua t ion  near  the consolute 
point  of a b inary  liquid, it is well to emphasize that  the a t t enua t ion  is 

simply one aspect of the general phenomena  of sound propagat ion,  as 
described, in general, by a complex velocity. The a t t enua t ion  at some 
frequency co > 0 is associated with the imaginary  part  of the velocity, while 

the real par t  of the velocity determines the dispersive sonic behavior  of the 
fluid. For  the sake of brevity, I do no t  discuss here the critical dispersion 
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(the interested reader is referred to our more detailed paper [1]), but it 
will become clear that a complete theory is obliged to deal with both 
attenuation and dispersion as two parts of the same problem. Afortiori, 
the theoretical expression for the velocity must reduce in the limit of 
vanishing frequency (co ~ 0 and 2 ~ ~ ,  the long-wavelength limit) to the 
formula that follows from straightforward thermodynamics. Thus, thermo- 
dynamics provides a kind of "co = 0 boundary condition," or check, on the 
theory. 

In the neighborhood of the critical point, thermodynamics gives the 
following expression for the velocity of sound propagation, u: 

g2 
u 2=u~ 2 _ _ _  (1) 

Tr Cp 

where Cp is the specific heat per unit mass at constant pressure, T~ is the 
critical temperature, uc is the sound velocity at Tr and 

T~S'o 
g = - -  (2) 

Vr 

is a kind of dimensionless "coupling constant." The critical volume per unit 
mass is denoted by V c, while S'c is the derivative of the entropy with respect 
to the pressure parallel to the 2 line of critical points, i.e., S'~ = (OS/~P)~T. 

The distance away from the 2 line, as measured on the temperature scale, 
is A T =  T - T c ( P ) .  For a binary liquid, the second term of Eq. (1) is 
generally small compared to the first, which permits the linearization 

�9 g2u 3 

u = u c  + 2TcC P (3) 

This linear variation of the sound velocity with C p1 is illustrated by the 
"Barmatz-Rudnick plot," shown as the solid line in Fig. 1, and is familiar 
from measurements by Barmatz and Rudnick [2] in the neighborhood of 
the 2 transition in liquid 4He. The 2 transition and the phase transition at 
the consolute point of a binary liquid are similar in that the pressure signal 
is not coupled directly to the order parameter. As a consequence, the 
Barmatz-Rudnick formula for 4He is equivalent to Eq. (3). 

In 1816, Laplace [3] showed that Newton had made an error in 
calculating the velocity of sound in gases. By recognizing that the sound 
velocity has to be calculated from the adiabatic, rather than from the 
isothermal, compressibility, Laplace [3] accounted for the 20% dis- 
crepancy between Newton's computation and the experimental data. This 
"entropy-clamping" condition also plays an essential role in liquids. In par- 
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Fig. 1. Barmatz-Rudnick plot for the sound velocity 
versus reciprocal of the thermodynamic specific heat, 
both in arbitrary units. At the consolute point the 
velocity is uc. For a nonvanishing frequency the real 
part, ul, deviates from its thermodynamic value 
(dashed curve) and the imaginary part, u2, develops a 
nonvanishing negative value that results in sound 
absorption. 

ticular, it implies that the pressure swings are necessarily accompanied by 
temperature swings, in order that the entropy should remain constant. The 
temperature swing obviously brings into play the thermodynamic response 
function relating entropy and temperature, namely, Cp. Rather than work 
with the variation of T, it is more convenient to use A 7: Entropy clamping 
then yields 

s (~?S/~?AT)I. Cp g Cp (4) 

In the neighborhood of the critical point, the isentropic compressibility is 

(5) 

840/10/2-6 
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Combining Eqs. (4) and (5) yields Eq. (1). From the definition of the 
coupling constant in Eq. (2), as well as from Eq. (4), we see that g can be 
obtained from purely static measurements. In the binary system 
3-methylpentane-nitroethane, g has been determined by Clerke et al. [4] to 
be -0 .34 _+ 0.01. 

2. ATTENUATION OF SOUND 

At a finite frequency, r r 0, the linearized equation of motion relating 
the variation in AT to the variation in P depends on the isentropic 
derivative in Eq. (4), which continues to remain valid, even in this nonther- 
modynamic situation. But as the consolute point is approached, critical 
slowing down implies that the temperature variations will not remain in 
phase with the pressure swings. In other words, in Eq. (4), Cp becomes a 
complex, frequency-dependent linear response function. Thus, the sound 
velocity u becomes dispersive and, by analyticity, acquires an imaginary, 
dissipative part. The temperature dependence of the deviation of u, = Reu 
and - u 2  = - I m u  from their thermodynamic values as functions of the 
thermodynamic quantity C p2 is illustrated schematically in Fig. 1 by the 
dashed and dot-dashed curves, respectively. We see that the theory of 
ultrasonic attenuation is intimately connected with that of the frequency- 
dependent specific heat. Before proceeding to develop this idea further, we 
note that this approach builds firmly on elementary thermodynamic 
principles, with no need for additional hypotheses. In particular, it is not 
necessary to postulate a bulk viscosity. 

As the critical point is approached, the relaxation rate }' of the slowest 
(2=  ~ )  fluctuation mode approaches zero as (AT) zv, where the exponent 
is zv ~- (3.05)- (0.63) - 1.9. Thus, an ultrasonics experiment performed at a 
finite frequency, r crosses over into a nonthermodynamic regime in which 
the slow modes, which do not have time to relax in one period of sound 
propagation, do not contribute to the specific heat. This is illustrated in 
Fig. 2. In the extreme nonthermodynamic regime, on the ? = 0 axis, the 
relevant variable for determining the strength of the linear entropy 
response, C, ,  is not AT but the frequency r The effect on u of this 
deviation from the thermodynamic behavior is illustrated by the vertical 
intercepts of the dashed and dot-dashed curves in Fig. 1. To obtain this 
frequency-dependent response function right at the critical point, we 
linearize the specific heat relative to its large noncritical background, 

CpI=-(B--}-C)-I'~B ~ - B - 2 C  (6) 

and write C(AT,  O) oc (AT)  -~ ~_ (AT)  - ~  as 

C(AT,  O) oc },-0.06 (7) 
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Crossing over into the nonthermodynamic regime, we replace 7 by - ico/a 
and obtain 

C(O, (2)) ~c 

where a, a numerical parameter of the order of magnitude of unity, is the 
slope of the dashed line in Fig. 2. The replacement of the temperature- 
dependent rate by the frequency expresses the principle of dynamic scaling. 
This feature and the occurrence of the factor of - i ,  as required by the 
relaxational nature of the concentration fluctuations, are exhibited 
explicitly, and quite naturally, by the detailed theory [1 ]. It follows that 
the critical portion e~ of the attenuation per wavelength 2 at the critical 
point (consolute point) is given (neglecting the noncritical background) by 

2~ c = 2nui 2nuc ~c "~ c~c oc Im C(0, co) oc (2) 0.06 (8) 
(2) CO 
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F i g .  2.  Frequency and rate plane illustrating the working of dynamic 
scaling. Both re and 7 are in arbitrary units. Crossover occurs from quasi- 
thermodynamic to nonthermodynamic behavior at the dashed line re = a 7. 

A s  the critical point is approached at a constant finite frequency ~o', as 
shown by the dot-dashed line, 7 dependence changes to re dependence. 
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A cautionary note is in order at this point. The linearization in Eq. (6) 
depends upon the inequality C ~ B. This may not be satisfied for all binary 
liquids and is certainly not satisfied in the case of liquid helium. In such 
cases C has to be kept in the denominator of Cb -1, with the consequence 
that Im C b -1 depends upon Re C as well as upon Im C. For the liquid 
helium 2 transition, ~ = -~ 0, so that in the vicinity of the 2 point Re C is 
logarithmically dependent upon the magnitudes of co and 7, and not simply 
on their ratio, the reduced frequency g2 = co/7. This leads to a lack of 
scaling at the critical point, unless the data are appropriately processed, an 
unusual feature fully confirmed by experiment. 

To exhibit experimental date for a binary fluid at its consolute point 
it is convenient to divide ~c by co 2, in order to isolate the noncritical back- 
ground. In Fig. 3, the critical point attenuation data of Harada and 
co-workers [5] is plotted in this way versus co -1~ The straight-line 
behavior, with the predicted value for the slope, confirms the above theory, 
whose only inputs are general thermodynamic relations and dynamic 
scaling. The fact that the magnitude of the attenuation is accurately 
accounted for, with no adjustable parameters, indicates that the adiabatic 
temperature swings are the correct physical mechanism for the critical 
attenuation. 

3. DYNAMIC SCALING ATTENUATION 

The determination of the full course of the attenuation as a function 
of temperature, at a given frequency, is a more complicated problem, which 

2 - -  
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f-r.o6 
Fig. 3. %if-1.06, where ~c is the critical-point attenuation, and f =  co/2~ is 
the frequency in MHz. The linear fit confirms the theory and the intercept 
determines the background attenuation. 



Theory of Critical Ultrasonic Attenuation 

(a) (b) 

375 

Fig. 4. 

(c) (d) 
Specific-heat graphs to two-loop order. The wavy lines in c and d correspond to the 

hydrodynamic shear modes. 

we have attacked [1]  using perturbation theory; the relevant Feynman 
graphs are shown in Fig. 4. The calculation is complicated by the necessity 
of accounting for a variety of static and dynamic interactions. The lowest- 
order static correction to the single-loop graph in Fig. 4a is Fig. 4b, which 
takes into account the four-point interaction and is an essential ingredient 
for obtaining the correct thermodynamic exponent. Figures 4c and d repre- 
sent the coupling to the shear modes. While Fig. 4d corresponds to the 
familiar correction to the order-parameter relaxation rate, the exchange 
graph, Fig. 4c, is unique to the specific heat and is needed for establishing 
the correct value for the parameter a. This, in turn, determines the tem- 
perature at which the attenuation falls to one-half of its critical point value. 

F 

Fig. 5. 
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Normalized attenuation function F-F(f2) v s  ~t~/ff~l/2. ~'~1/2 is the 
value of the dimensionless frequency ~2 for which F ( ~ )  = �89 
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From a more general theoretical point of view, omission of such graphs is 
known to violate gauge invariance in quantum electrodynamics. The 
"attenuation function," F((2), defined as the attenuation divided by its 
value at the critical point, for the same frequency, is exhibited in Fig. 5. 
When s ~ 0% F(t2)--. 1 asymptotically, while for s ~ 1, F(O)oc f2. In 
plotting Fig. 5 we used the following approximate formula, which we found 
[1 ] to capture the essential features of this function: 

F(g2) = [1 + 0.414(s 1/2]-2 (9) 

The scale parameter s corresponds to the halfway temperature referred 
to above. It is seen that the agreement with the data of Garland and 
Sanchez [6], at 3 MHz is quite satisfactory. The observed frequency scale 
is similarly in good agreement with the theoretical estimate of O1/2-~ 2. 

4. COEXISTENCE CURVE 

All the above discussion has related to a binary liquid mixed at exactly 
the critical concentration. Upon cooling in the single-phase regime, such a 
fluid will arrive at the consolute point and a separation into two 
coexistence phases will start to take place. The approach to the second- 
order phase transition is characterized by the diverging correlation length, 

r  -v (10) 

where v = 0.63. The diverging relaxation time, responsible for the critical 
ultrasonic attenuation, whose temperature dependence we have written 
above as 

y - l m ( A T )  -z` (11) 

can equally well be expressed in terms of the correlation length as 

y 1 ac Cz (12) 

with z ~-3.05. If the concentration deviates by some amount s from its 
critical value, then Eq. (11) no longer applies and Eq. (12) must instead be 
used. In this case, r increases as the temperature is lowered, but it does not 
diverge. When the coexistence line is reached and a first-order transition 
takes place, r has the finite limiting value 

. . . .  ac Ist ~/~ (13) 

where fl-~ 0.325 is the order-parameter critical exponent. As a result, the 
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re laxa t ion  rate  does not  d rop  to zero, as it does at  the consolute  po in t  but,  

instead,  takes  on the nonvan i sh ing  l imit ing value 

7 . . . .  oc Isl zv/a ( 1 4 )  

It  follows that ,  on the coexistence curve away  from the consolute  point ,  the 
f requency dependence  of the cri t ical  po r t i on  of the u l t rasonic  a t t enua t ion  is 

given by  

where 

and  

O~c QC ( J ) - l ~  . . . .  ) 1.06 XF(s . . . .  ) - -  = 7  . . . .  X F ( ( 2  . . . .  ) 
gO 

(15) 

X ~  ( C ~r . . . .  ) 1.06 ( 1 6 )  

gO 
f2 . . . .  - (17) 

~coex 

The numer ica l  factor  is 

The  final form of the r igh t -hand  side of Eq. (15) is p lo t ted  versus X as the 
solid curve in Fig. 6. F o r  compar i son ,  the dashed  s t ra ight  line shows the 
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Fig. 6. Frequency dependence of ~//o~ 2 as a function of X oc Q-1.06, with 
~-~ooex=C~ ..... where ~'r is the relaxation rate on the coexistence 

curve. The dashed straight line shows the consolute point behavior in Fig. 3, 
while the curve illustrates the reduction in attenuation for a noncritical 
concentration. 

3 + 2 x / 2 ~  2.9 (18) 
(21/2 

0.06 
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linear relationship that has already been exhibited in Fig. 3 for the 
consolute point. The downward curvature and the reduction below the 
dashed straight line are a consequence of the factor F(O . . . .  ) in Eq. (15), 
with the smaller values for 12 . . . .  and F(f2 . . . .  ) occurring for the larger 
values of X. 

5. SUMMARY 

In summarizing this brief review In would like again to call attention 
to the excellent agreement between g = - 0 . 3 4 _  0.01, the direct thermo- 
dynamic determination of the coupling constant by Clerke and Sengers, 
as reported by Clerke et al. [4] ,  and its indirect measurement, I gl = 
0.33___ 0.03, by means of the attenuation data of Harada et al. [5].  It is 
worth emphasizing that this agreement leaves little room for doubting that 
the physical mechanism for the attenuation is the temperature oscillations 
resulting from the adiabatic compressions and rarefactions. The frequency 
dependence of the attenuation per wavelength, with the exponent e/zv  "~ 
e / 1 . 9 -  0.06, is further confirmation of the essential role of the specific 
heat. Finally, the predictions of the theory for the frequency scale 
parameter s and for the shape of the scaling function F(O)  are in 
encouragingly good accord with the experimental findings of Garland and 
Sanchez [6].  It is likely, however, that the last word has not been said 
regarding these more detailed aspects of the theory. 
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